The realization space is [1 1 0 2*x1 - 1 0 1 1 0 2*x1 - 1 2*x1 - 1 1] [0 1 1 -x1 + 1 0 0 1 2*x1 - 1 -x1 + 1 x1 x1] [0 0 0 0 1 1 1 2*x1^2 - 1 2*x1^2 - x1 x1 - 1 x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, 2*x1 - 1, 2*x1^2 - 2*x1 + 1, 2, 4*x1^5 - 12*x1^4 + 16*x1^3 - 10*x1^2 + 4*x1 - 1, 2*x1^3 - 4*x1^2 + 4*x1 - 1, 2*x1^3 - 6*x1^2 + 8*x1 - 3, 4*x1^5 - 16*x1^4 + 24*x1^3 - 20*x1^2 + 8*x1 - 1, 2*x1^3 - 4*x1^2 + 5*x1 - 2, 2*x1^2 - 1, 2*x1^3 - 6*x1^2 + 4*x1 - 1, 2*x1^3 - 2*x1 + 1, 4*x1^6 - 12*x1^5 + 12*x1^4 - 6*x1^2 + 4*x1 - 1, 2*x1^3 - 4*x1^2 + 1, 4*x1^5 - 8*x1^4 + 4*x1^3 - 2*x1 + 1, 2*x1^3 + x1 - 1, 4*x1^5 - 12*x1^4 + 14*x1^3 - 4*x1^2 - 2*x1 + 1, 4*x1^5 - 12*x1^4 + 10*x1^3 + 6*x1^2 - 10*x1 + 3, 4*x1^5 - 8*x1^4 + 2*x1^3 + 8*x1^2 - 6*x1 + 1, 2*x1^2 - 4*x1 + 1, 2*x1^4 - 2*x1^3 + 2*x1 - 1, 4*x1^6 - 12*x1^5 + 14*x1^4 - 8*x1^3 - 2*x1^2 + 4*x1 - 1]